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We report here on the development of a multi-material hydrocode for simulation of elastoplastic flows 
with large deformations. Using this hydrocode a new constitutive model for porous elastic-viscoplastic 
materials has been evaluated and the penetration of an aluminum projectile into porous rock material has been 
simulated numerically. The dependence of the penetration depth upon model parameters has been studed. 

Introduction 

In the present work, an alternative formulation of elastoplasticity is used, based on symmetric elastic 
distortional deformation tensor proposed in [l]. This tensor is referred to the present configuration and its 
usage implies isotropic response. Such an “alternative” formulation of plasticity has the conceptual advantage 
that there is no need to introduce both total and plastic deformation measures. 

Constitutive equations 

The mass and the momentum conservation laws for material a can be expressed as following: 

(1) 

Here p, is the density of the component a, o is the average stress tensor and u is the mass velocity. 
The case v=O corresponds to that of plane symmetry and the case v=l to axial symmetry; y is the radial direction 
and x is the axial direction ~. To describe elastic-plastic behavior, we use the following equation for the 
unimodular tensor of elastic distortional deformation [ 11. 

~.=LB,+B,LT-~(D.I)B,-AG; A;=I-(By---$I; (2) 

r specifies the plastic response of the material and is taken to be a function of the von Mises effective stress 
and the yield strength. For rate-dependent response, we used the function proposed by Swegle and Grady [2]. 



If the elastic deformation tensor is known, the deviatoric stress can be calculated for every component as 
P l-4 T, = G,J,-‘(1 - @=)(B, - f(B, l I)); where G is the shear modulas, J, = 22 
Pa l--Q, ’ 

and ma and & are 

respectively the reference and the current porosities for material a Using D (the symmetric part of the velocity 
gradient tensor L), the partial pressure P, and the deviatoric stress for material CX, the evolution equations for 
internal energy of the given material can be expressed as 

p&z-o,.D=-P, +T,*D 

Equations (l)-(3) together with the constitutive equation for porosity growth (described below) and 
equations of state to calculate pressure represent the full system to be solved. 

Strength of material 

The model used here is intended to apply to both metals and geological porous materials. The physical 
phenomena that influence the yield strength Y are accounted by assuming a simple multiplicative form with Y 
being given by 

y= y,F;(&,,)F,(P)F,(n)F,(B1F,(B) [ 1 g$ (4) 

The functions F in (4) represent hardening and softening effects due to plastic strain (F,), pressure 
sensitivity ( F2), distortional deformation damage ( F3) and melting (F,). The function F4 is introduced to 
decribe the difference of the yield strength in tension compared with that in compression. In the calculations 
described below the functions e,< and 4 were equal to 1 for aluminum and the function F; was equal to 1 
for rock material. A detailed description of these functions, with the specific values for each of the coefficients, 
can be found in [3]. 

Evolution of porosity 

The tnodel used in the calculations to describe the behavior of a porous, visco-plastic, material undergoing 
damage was developed in [3]. Here we neglect the details. 

To describe the porosity increase due to distortional deformation, the following equations is used: 4 = (l-4) H(Q*+) t 0 , for Qmax < @* and p > - pd (5) 

where md, I$* and p* are material constants, pd is a positive function to be specified , t&,,ax is the maximum 

value of porosity for all time and pOQis the rate of dissipation due to distortional deformation. 

The evolution equation for porous compaction is given by 

&O~ forr&,,,Z@*and-pc<p<O , 
. 
@=-(l-@)<-D*I>H(Q-@;i,)$O forr&,,,,~@*andOIpIp,, 
. 
@=-r,<Q-@,*>H(-D*I)<O for Qmax 2 @* and P > P, , (6) 

The functions I$,* and I$*,~, are defined by the expressions 



The functional form of Q,** is chosen in order to control the slope of the pressure- volume curve at the onset of 
compaction and is defined by 

$r* = Q exp [- { 
cl + (1-q) F6(o,,Y) 

c2Jc 
,{Y, <(y2-1>], 

Fe(c~c,Y) = c3 [sin { t Min (1, $)}lc4, 
O<ct<l , c2>o, OIc311, c4>l, (8) 

where c, and c2 are material constants that controls the shape of the pressure curve during compaction. 
The function Fn controls shear enhanced compaction and it is characterized by the material constants ( c3. c4]. 

Specifically, for c3>0, the value of I$: decreases as deviatoric stress oe is increased. 

Also, since F6 is taken to be a function of oeN it automatically incorporates the effects of hardening, pressure 
sensitivity, damage, Lode angle and porosity on shear enhanced compaction. 

The evolution equation for porous dilation, when the pressure is more negative than (-pd) is given by 
. 
I$ = rd exp(cd$) H(I$~ - I$) H(D l I) 2 0 for PI-pd. (9) 

where the rd is taken to be a function of strain rate that is specified in the form 

rd=rdO[i+~Jn] (10) 

It is expected that the value of pd will decrease towards zero as damage evolves. However, the value of pd is 
required to remain positive. Thus, for example, pd can be taken to have the simple form 

pd=[l-c~f(~)lpdO 9 Olc5<l, (11) 
where pdo and c5 are material constants and the function f(w) is specified in [3]. 

In addition, a measure of damage w due to porous compaction and dilation is defined by the evolution equation 

;=1 Ii1 
- H(l-w) , w 

E, (I-‘$‘) 
which is integrated subject to the condition that o vanishes in the reference configuration. Also, the Heavyside 
function ensures that o never is greater than unity. 
Using a Mie-Gruneisen EOS, a functional form for I$: can be specified by determining the value of Q associated 
with p= -pd such that 

1-o Pd 
J+ 

$=l- PSOG 

1 YsOE ’ 
(13) 

where thermal effects have been included. 



The evolution equations (5). (6) (9) and (11) introduce seven nonnegative constants [ md, $*, p*, r,, pe, 

cd. E, ) and five functions ( I$:, I$&,, 4:. Id, pd 1. 

Numerical Algorithm 

In the present work, a Godunov scheme is used to integrate the mass and momentum equations (1). To 
solve the evolution equations (2) for the elastic deformation tensor, the velocity gradient tensor and relevant 
history variables describing plasticity are used in each cell. A monotone Godunov scheme provides a smooth 
velocity and velocity gradient D which, when substituted into the evolution equation for the elastic deformation 
tensor, gives a robust algorithm for updating the deviatoric deformations and stresses. The deviatoric stresses 
in turn are used to solve a Riemann problem for the elastic material. To ensure stability we split the time step 
into several substeps when integrating the equations for internal energy and porosity evolutionThen new, 
updated pressure and deviatoric stresses are used in (3) after porosity recalculation in each substep. 

We have chosen the volume-of-fluid (VOF) formulation to treat interfaces. This approach proved to be 
very robust for problems where high accuracy in interface tracking is required (for example, Rayleigh-Taylor 
or droplet splash simulations)[4]. One of the main advantages of the VOF approach in comparison with other 
interface tracking methods is that there is no need to explicitly specify the interface, which can be reconstructed 
each time step using the volume fraction field. This makes the VOF method relatively easy to use in 3D. 

To simplify the logic of the interface reconstruction, a rectangular grid is used. Orthogonal grid 
structure is also convenient to approximate the velocity gradient tensor and derivatives required for the second 
order scheme. 

More information about the detailes of the numerical algorithm can be found in [5] 

Simulation Results 

To validate the computer code for penetration problems, experiments [6] on steel projectile impact into 
an aluminum target were simulated using the Steinberg-Guinan rate independent strength model for both target 
and projectile material. The calculated crater size is close to experimental as it is seen from Fig. 1. The results 
are shown for two different velocities of the 6 mm steel projectile: 1.85 km/s and 7.62 km/s. 

To see how the new constitutive model describes experimental data on uniform compression of porous 
rock material, and spa11 damage of metal in uniaxial expansion, eqs.6 and 9 were integrated numerically by a 
“driver” routine that used a specified velocity gradient evolution for one element. The results are shown in 
Fig.2(a,b). 

Fig.3 shows simulation results for a lkm/s impact of a cylindrical aluminum projectile on 30% porous 
tuff The length of the projectile was 1.8cm and the diameter was 0.8 cm. The results are shown 30 ps after 
the impact. Using an elastic-perfectly plastic model for the aluminum (Fig.3.b) produces a more deformed 
impactor compared to viscoplastic model results (Fig.3.a) and approximately the same ‘penetration depth. 
Changing the constant responsible for porous compaction from 0.98 to 0.7 makes the porous compaction 
slower. As a consequence of that, the strength of the rock material is less and the penetration of the porous 
material is deeper, and there is more damage to projectile on the periphery (Fig.3.c) 
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Fig. 1 Experimental (dashed lines: and* calculated Fig.2(a) Comparison of the calculated compaction 
crater profiles for different impact velocities of 6mm curve with experimental data [7] for Mt.Helen Tuff 
diameter steel projectile: A-l.85 km/s, B-7.62 km/s 
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Fig,2(b)Comparison of the calculated (line) and 
experimental [8] (points) spall strength at different 
deformation rates 
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Fig.3(a) Numerical grid and porosity levels for impact 
of Al projectile on porous rock material. The 
viscoplastic model with hardening was used for Al. 
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Fig.3(b) Numerical grid and porosity levels for impact Fig.3(c) Numerical grid and porosity levels for impact 
of Al projectile on porous rock material.The elastic- of Al projectile on porous rock materialThe value of 
perfectly-plastic model was used for Al. cl has been changed to be equal to 0.7 (instead of 

0.98 used before) 
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